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1 Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
2 Hahn-Meitner-Institut, Abteilung SF5, Glienicker Straße 100, 14109 Berlin, Germany

Received 6 October 2005 / Received in final form 14 July 2006
Published online 18 August 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. A diatomics-in-molecules (DIM) model with ab-initio input data, which in part I successfully
described the structure and bonding properties of protonated argon clusters ArnH+, is used here to in-
vestigate some aspects of the dynamics of such aggregates for n up to 30. The simple triatomic ionic
fragment, Ar2H

+, is studied in some detail with respect to normal vibrations, characteristics of classical
intramolecular dynamics as reflected in the Fourier spectra of dynamical variables, and accurate quantum
states of the vibrational motion. For larger clusters ArnH+ (n ≤ 30), the normal vibrational frequencies
(and displacement eigenvectors) are calculated and related to the cluster structure. In addition, the Fourier
spectra are analyzed with respect to their variation with changing internal energy and cluster size. As ex-
pected, the clusters show some floppy character. Even a little vibrational excitation can lead to internal
rearrangement and to Ar-atom evaporation from the clusters; this is studied in more detail for one small
complex (n = 3). Electronic excitation to one of the low-lying excited states, which are all globally repul-
sive, leads to complete fragmentation (atomization) of the clusters. A variety of conceivable elementary
collision processes involving protonated argon clusters are discussed. Some of these may play a role in the
gas-phase formation of medium-sized ArnH+ aggregates.

PACS. 36.40.Wa Charged clusters – 36.40.Qv Stability and fragmentation of clusters – 36.40.Jn Reactivity
of clusters – 36.40.Mr Spectroscopy and geometrical structure of clusters – 34.30.+h Intramolecular energy
transfer; intramolecular dynamics; dynamics of van der Waals molecules – 34.50.-s Scattering of atoms
and molecules

1 Introduction

In the past two decades, cationic van-der-Waals clusters of
the type RgnM+, where Rg denotes a rare-gas atom and M
some atom or small molecule, have attracted much atten-
tion (for an overview see, e.g., [1,2]). Theoretical research
(on which we concentrate here) has mainly been focused
on the bonding of such aggregates, on the corresponding
structural properties in comparison to the neutral coun-
terparts, and sometimes also on spectroscopic characteris-
tics. Most of the studies consider the pure cationic rare-gas
clusters Rg+

n with small and medium numbers of atoms,
n. Much less is known about inhomogeneous systems con-
taining an impurity M; only some work on protonated
rare-gas complexes RgnH+ with n up to 7, recent stud-
ies on ArnH+

3 with n = 1–9, and a few papers on small
complexes with diatomics M and n = 1 or 2 can be found
in the literature. A compilation of references is given in
our recent article (part I of this study) [3]. The dynamics
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of such aggregates is largely unexplored except for some
work on a number of triatomic prototype complexes [4–7].
There is much less known about these clusters than for
corresponding neutral systems [8].

Considering this situation, we have recently begun a
systematic and extensive theoretical investigation of inho-
mogeneous cationic van-der-Waals clusters RgnM+ with
the following aims: (1) to enlarge the cluster size and look
for the dependence of cluster properties on n, (2) to in-
clude also the low-lying excited electronic states, and (3)
to gain some insight into the dynamical behaviour of such
polyatomic aggregates. This is a task which requires, in
particular, very efficient and at the same time sufficiently
reliable computation procedures for all stages of the treat-
ment.

In the first paper [3] of this series we reported on the
binding and geometrical structure of protonated argon
clusters, ArnH+, a simple example of the inhomogeneous
aggregates we are interested in. In the present article we
extend this study to include the dynamics of such systems.
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Our method of approach is based on a minimum-basis
diatomics-in-molecules (DIM) model for calculating the
potential energy of interatomic interaction. This model is
carefully parametrized with accurate ab-initio data as de-
scribed in [3]. Using the potential-energy surface (PES)
points generated, we investigate several aspects of the dy-
namical behaviour of small and medium-sized ArnH+ clus-
ter ions, namely intra-cluster dynamics as well as some
collision processes involving the ArnH+ species. The re-
sults should give insight into dynamical and spectroscopi-
cal properties, suggesting also how such aggregates could
be prepared and spectroscopically detected.

The present paper is organized as follows: in Section 2
the problems to be treated are specified in more detail; in
Section 3 the methodology is sketched along with a brief
description of the peculiarities of the calculation proce-
dures; Section 4 presents the results, first for the triatomic
Ar2H+ complex, then for medium-sized clusters ArnH+.
Finally, in Section 5, we give a summary and an outlook.

2 The tasks

In the present study, we shall first consider those in-
tramolecular motions which leave the overall cluster struc-
ture intact, i.e. the vibrations of the cluster. For triatomic
complexes like Ar2H+, we are able to investigate the vibra-
tions in great detail and with high precision in a quantum-
mechanical approach. The vibrational quantum states can
be accurately computed giving reliable data for zero-point
and excitation energies and leading to conclusions about
localization properties, floppy character, energy exchange
between the modes, and possible irregularity of the in-
tramolecular motion on the quantum level. These find-
ings will be related to results of the normal-mode analysis
and the classical-mechanical treatment, in particular the
Fourier spectral analysis of classical trajectories, thus get-
ting an idea of the reliability of the classical treatment
and the harmonic approximation.

For the larger clusters, our study will be restricted to
the classical level only, in order to avoid expensive quan-
tum calculations which could, in principle, be carried out
by means of iterative schemes like filter diagonalization
(see, e.g., [9]). The classical approach should be able to
describe at least the gross dependence of vibrational prop-
erties on the cluster size (n) and to reveal the possible
onset of (classical) chaos.

Our second aim is to investigate some of those intra-
cluster motions that are connected with the rearrange-
ment of atoms within the cluster. We discuss two re-
structuring processes triggered by vibrational excitation,
namely proton and argon-atom migration, and we consider
also argon-atom detachment, all of these processes treated
in a classical approach for one small sample cluster. This
study does not claim completeness, in particular with re-
spect to possible mode-specificity. Other related processes
like structural relaxation will not be considered in detail.
Furthermore, intra-cluster processes in excited electronic
states as induced by ultraviolet or visible light irradiation
will not be explicitly investigated since, due to the globally

repulsive nature of the excited-state PESs, only complete
fragmentation is to be expected, as already discussed in
part I [3].

Thirdly, we examine at the classical level some selected
elementary processes which may play a role in gaseous
mixtures or in molecular beams: collisions involving neu-
tral Ar atoms and clusters, protons and positively charged
clusters. In particular, we consider neutral Arm clusters
interacting with a proton,

H+ + Arm, (1)

and with a protonated argon cluster,

ArnH+ + Arm. (2)

It is not our aim to calculate cross-sections or reaction
rate constants, but only to understand qualitatively what
kinds of processes may occur; hence, we restrict the study
to the analysis of some single, representative collision
events. Also we do not aspire to completeness in this con-
text; therefore, other conceivable and related processes like
those between H atoms and pure cationic argon clusters,
Ar+n , will not be considered.

3 Methodology

The basic approximation underlying our investigations
is the adiabatic (Born-Oppenheimer) separation of elec-
tronic and nuclear degrees of freedom in its usually applied
simplest version in which the potential-energy function
governing the motion of the nuclei is given for each nuclear
arrangement by the sum of the total energy of the electron
cloud and the total electrostatic nuclear repulsion energy.
Since relativistic effects do not play a role in the present
case (in particular, there is no significant spin-orbit inter-
action), the first piece of work is the approximate solution
of the nonrelativistic electronic Schrödinger equation for
generating the interatomic-interaction potential energy as
a function of the nuclear coordinates. This function can
then be used in the nuclear Schrödinger equation or in
the classical equations of nuclear motion governing the
dynamics.

3.1 Potential-energy surface generation

The broad variety of applications envisaged in the present
study puts demands upon the methods for generating the
PES data: (i) it must be sufficiently reliable to give at least
qualitatively correct interatomic-interaction potentials in
dependence on the geometrical configuration of the nuclei,
(ii) it should also admit the generation of interaction po-
tentials for electronically excited states of the aggregates,
and (iii) it must allow efficient calculation of each point on
the multi-dimensional PESs. Because of the large number
of variables (3(n+1)−6 nuclear degrees of freedom in the
present case), an analytical fit of the total potential-energy
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function is hardly practicable, so that there is no alterna-
tive to generating the PES points as they are needed (i.e.,
for example, “on the fly” in a trajectory propagation).

The only quantum-chemical approach which is able in
practice to meet these requirements is the diatomics-in-
molecules (DIM) model. For the systems studied here, the
medium-sized protonated argon clusters, the fulfillment of
demand (i) has been tested against advanced conventional
ab-initio approaches in our foregoing papers [3,10]. Even
the simplest version, the minimum-basis DIM model, is
sufficient for our purposes.

We shall not describe the DIM model in detail but only
summarize the main characteristics (we refer the reader to
[3,10] and the literature citations therein):

– our DIM model for ArnH+ takes into account all frag-
ment states leading to singlet states of the whole clus-
ter and lying energetically not more than about 10 eV
above the respective fragment ground states:

Ar(1S), Ar+(2P◦), H(2S),
ArH(X2Σ+), ArH+(X1Σ+, 11Π, 21Σ+),
Ar2(X1Σ+

g ), Ar+2 (X2Σ+
u , 12Πg, 12Πu, 12Σ+

g ).
This “minimal DIM model” demands the smallest
amount of fragment information consistent with a
meaningful description of the clusters;

– the atomic and diatomic fragment data needed for
the DIM procedure – namely: the atomic-state ener-
gies, the diatomic potential-energy functions and elec-
tronic wavefunctions in dependence on the internu-
clear distance – are very accurately determined by
an internally contracted multi-reference configuration-
interaction (icMRCI) approach including a generalized
Davidson correction for the estimation of the energetic
contributions of higher-order excitations (icMRCI +
Q). For this task we used the MOLPRO program pack-
age [11].
The set of one-electron atomic basis functions cho-
sen for carrying out these calculations was the aug-cc-
pVTZ basis set of Woon and Dunning [12] (containing
also several diffuse functions), contracted to a total of
50n + 23 basis functions;

– for converting the diatomic input data from the
molecular-orbital (MO) based CI form, as obtained in
the MRCI treatment, to a valence-bond (VB) form in
which they are needed in the DIM ansatz, a projection
procedure, elaborated by Kuntz and Schreiber [13], has
been applied. If a mixing of VB configurations is re-
quired for a state considered (this is the case here for
the two 1Σ+ states of the fragment ArH+), the pro-
jection onto a linear combination of the corresponding
VB configurations is computed. The mixing coefficient
is thus determined in a completely straightforward ab-
initio-based way without any additional VB calcula-
tion.

This approach is what we name our “minimal ab-initio
DIM model”. It enables to calculate all the necessary PES
data for the clusters ArnH+ very efficiently on an equal
footing. The topographical analysis of these data, in par-
ticular the determination of the local minima of the multi-
dimensional PESs has been discussed in part I of this se-

ries; here, in part II, the PES points are used as input to
the methods for studying the dynamical properties of the
clusters.

3.2 Vibrations and intra-cluster processes

The intramolecular vibrational motions of a polyatomic
aggregate can be most easily described by the model of
normal vibrations as long as the harmonic approximation
to the PES in the neighbourhood of the local minima is
sufficient, i.e. as long as the minima are deep enough, sep-
arated by high barriers, and the vibrations are of small
amplitude. If this is not the case, i.e. the minima of the
PES are flat with low barriers between them, and the nu-
clear motions have large amplitudes, then the harmonic
approximation breaks down, the modes are strongly cou-
pled, and the whole aggregate shows what is often called
floppy character. For triatomic systems this behaviour has
been rather intensively studied (see, e.g., [14]) within the
framework of classical as well as quantum-mechanical ap-
proaches; this will also be done here for the triatomic frag-
ment Ar2H+.

For larger clusters ArnH+ the task of studying the in-
ternal dynamics is much more difficult, even with good
PES data available; in particular, a quantum-mechanical
treatment is connected with serious problems so that one
usually resorts to traditional classical tools.

3.2.1 Quantum-mechanical treatment of the Ar2H
+

triatomic fragment vibrations

The treatment of vibrating triatomic molecules is nowa-
days essentially a routine task using, e.g., the truncation
recoupling method [15] or filter diagonalization [9]. Nev-
ertheless, although the computation methodology is well
established, such calculations may not always be trivial,
especially for floppy molecules and special mass combina-
tions of the atoms involved. In the case of Ar2H+ it turns
out to be difficult to find an appropriate and computation-
ally efficient coordinate system. After some attempts with
Radau coordinates [16] (which proved ill-suited because of
the light central atom) and several solution methods for
the Schrödinger equation we finally decided to employ the
procedure outlined below.

After separating the center-of-mass motion and in-
troducing symmetric atom-diatom Jacobi coordinates
(namely the Ar–Ar internuclear distance r, the distance R
from the Ar2 center of mass to H, and the Jacobi angle θ
enclosed by the vectors r and R), a factor (1/rR) is usu-
ally split off from the complete wavefunction Ψ(r, R, θ):

Ψ(r, R, θ) =
1

rR
Φ(r, R, θ). (3)

This entails no loss of information and is done for mathe-
matical simplicity. Of course, the step is accompanied with
a change in the volume element from r2R2drdR sin(θ)dθ
(in connection with Ψ) to drdR sin(θ)dθ (for Φ). For the
vibrational states of the triatomic molecular system with
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zero total angular momentum (J = 0), the transformed
wavefunctions Φ(r, R, θ) are the normalized solutions of
the time-independent Schrödinger equation

ĤΦ(r, R, θ) = EΦ(r, R, θ) (4)

with the Hamiltonian given by

Ĥ = − �
2
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∂2

∂r2
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2
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∂2

∂R2
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2

2

(
1

µr2
+

1
MR2
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sin(θ)
∂

∂θ
sin(θ)

∂

∂θ
+ V (r, R, θ)

(5)

where µ and M are the appropriate reduced masses of the
particle pairs Ar–Ar and H–Ar2, respectively.

In order to guarantee that the complete vibrational
wavefunctions Ψ will not become singular at R = 0, the
functions Φ have to obey, among others, the boundary
condition limR→0 Φ(r, R, θ) = 0.

The symmetric Jacobi coordinates have two disadvan-
tages: (i) they lead to a singularity in the Hamiltonian at
R = 0, which lies in the classically accessible region, and
(ii) they do not lend themselves well to the separation of
the vibrational motion; this hampers the interpretation
of the results. Nevertheless, these undesirable features do
not preclude meaningful calculations.

For the solution of the vibrational bound-state prob-
lem we use a discretization within the discrete variable
representation (DVR) with sinc basis functions [17] for the
two distance coordinates r, R, and Legendre polynomials
for the angular basis:

– for the r coordinate 100 points in the range [4.6, 9.0] a0,
– for the R coordinate 100 points in the range

[0.05, 5.4] a0,
– for the θ coordinate 50 points, reduced to 25 by sym-

metry.

Despite the relatively large extension of this grid, the
range of vibrational states that can be reasonably de-
scribed is limited to energies up to the saddle point at
about 0.4 eV; this is due to the boundary conditions.

The Schrödinger equation was solved both for gerade
and ungerade symmetry by an improved filter diagonaliza-
tion method [9,18] using filter basis functions constructed
from 50,000 Chebyshev polynomials.

3.2.2 Classical intra-cluster dynamics

The most obvious approach to the internal dynamics of
a cluster (which can even be directly visualized) is the
normal-mode model. It is obtained largely as a by-product
of the topographical analysis of the PES, namely from the
diagonalization of the Hessian matrix (second derivatives
of the potential-energy function) at the stationary point
considered. This procedure in either analytical, numerical,
or mixed form is standard and is included in most of the
program packages; more explanation is therefore hardly
necessary here (see, e.g., [19]).

Some detailed information about the classical dynam-
ics of the nuclear motion in dependence on the initial con-
ditions (in particular on the initial internal energy) and
on the cluster size (n) can be gained from a Fourier anal-
ysis of appropriate dynamical variables Z(t) as functions
of time t (e.g., coordinates as the simplest choice). This
means that the spectral density (power spectrum),

I(ω) = lim
T→∞

〈
1

2T

∣∣∣∣
∫ T

−T

Z(t) exp(−iωt)dt

∣∣∣∣
2〉

, (6)

has to be computed; here the brackets 〈 〉 indicate an
ensemble average over the initial vibrational phases of
the trajectories in a batch. The observation time, 2T ,
over which the trajectories are followed, was some 30 ps;
the sampling interval, spectral resolution, and critical fre-
quency were chosen appropriately in each case in order to
obtain reliable spectra.

Usually, the feasibility of intra-cluster rearrangement
processes is determined largely by the shape of the PES
along the reaction path (minimum-energy path) connect-
ing the two local minima corresponding to the reactant
and product structures via a saddle point transition con-
figuration. The dynamics of the processes is described here
by classical trajectories. Again this is a standard proce-
dure so that further detailed explanation is not necessary;
we note only: the classical Hamiltonian equations of mo-
tion are formulated in terms of Cartesian coordinates of
all the atoms involved [20]. After selecting the complete
set of appropriate initial conditions the integration of the
equations of motion is accomplished by using a combined
fourth-order Runge-Kutta, fifth-order Adams-Bashforth-
Moulton algorithm [21]. The integration is started by exe-
cuting five cycles of Runge-Kutta integration with a fixed
time step ∆t for preparing a table of coordinates and
momenta at the first five multiples of ∆t. This table is
then used to continue the integration by the more efficient
Adams-Bashforth-Moulton method. Although the latter
allows for the use of variable time steps, we have chosen
a uniform time step ∆t in order to be able to perform
an FFT analysis of the trajectory data. Depending on the
system size, time steps of ∆t = 5× 10−17–5× 10−15 s are
used throughout.

We mention here as an alternative approach to the
whole problem of cluster dynamics the Car-Parrinello
method [22], which is based on the density-functional the-
ory for the description of the electrons and, up to now,
restricted to the electronic ground state. Therefore it was
not considered in our project; however, for problems main-
taining the electron cloud in its ground state a comparison
with our results would be of interest.

3.3 Collisions involving clusters

Because of the large number of degrees of freedom, we also
use the classical trajectory approach (as described above)
for the treatment of collisions of clusters with other par-
ticles (atoms, molecules, or clusters). This requires some
preparatory work over and above the standard procedure



T. Ritschel et al.: Structure and dynamics of cationic van-der-Waals clusters. II. 131

Table 1. DIM geometry data, binding (atomization) energies, atomic charges, harmonic frequencies, and zero-point energies
(ZPE) for the stationary points of Ar2H

+, Ar+2 , and ArH+.

Geometryb Atomic charges Harmonic frequenciesc

EB
a r1 r2 α q1 q2 qH ω1 ω2,3 ω4 ZPE

eV a0 a0 deg a.u. a.u. a.u. cm−1 cm−1 cm−1 eV

(a) Ar2H
+ (11A′)

Min 1 (D∞h) −4.566 2.76 2.76 180.0 0.182 0.182 0.635 1157 592 306 0.164
Min 2 (C∞h) −4.184 8.90 2.42 0.0 0.001 0.366 0.633 2736 42 56 0.178
SP (Cs) −4.182 8.49 2.42 31.5 0.001 0.365 0.634 2740 51i 56 0.173

(b) Ar+2 (X2Σ+
u ) −1.322 4.58 0.500 0.500 300 0.019

(c) ArH+ (X1Σ+) −4.132 2.42 0.364 0.636 2737 0.170
a Binding energy EB: total energy relative to the sum of the energies of the separated ground-state atoms or ions: Ar(1S),
Ar+(2P◦), and H+, respectively, for the three cases (a), (b), and (c) considered.
b r1 and r2 are the distances of the proton H+ from the first and the second Ar nucleus, Ar(1) and Ar(2), respectively, in Ar2H

+.
For Ar+2 , r1 denotes the Ar–Ar distance. α is the angle ∠Ar(1)HAr(2).
c The numbering of the normal vibrations is: 1 – asymmetric stretch, 2, 3 – bend, 4 – symmetric stretch. For the (nonlinear)
saddle-point configuration there is only one bending vibration.

with regard to the choice of the initial conditions, which
are specified as follows: first the reacting partners are sep-
arated to very large distances (≈1000 a0) in order to pre-
pare their initial vibrational states, chosen to have ran-
dom vibrational phases. Then the partners are brought to
a shorter distance (typically 25–30 a0), the translational
momentum vectors are added according to the selected
impact parameter and the translational energy, and the
integration of the equations of motion is started. All cal-
culations have been performed for non-rotating collision
partners.

4 Results and discussion

4.1 Normal vibrations, vibrational quantum states,
and internal dynamics of the Ar2H+ complex
in its electronic ground state

Among the interesting topics in the context of the present
study is the reliability of the harmonic approximation and
the classical-mechanical approach. The strongly bound
linear centro-symmetric complex (Ar–H–Ar)+ plays the
role of a chromophore of the ArnH+ clusters in their most
stable geometric configurations, as discussed in part I [3],
so that it is highly desirable to know its vibrational-state
properties as accurately as possible.

4.1.1 DIM ground-state PES characteristics

For the above-mentioned complex, the ground-state PES
has been calculated in the minimum-basis ab-initio DIM
approach in part I of this series [3], briefly summarized
also in [10]. We describe the topography of the PES for
the electronic ground state of the Ar2H+ complex by the
internal coordinates r1, r2, and α as defined in footnote b
to Table 1 where the relevant energetic and geometric data
as well as atomic charges and harmonic frequencies for the
stationary points are given. In Figure 1 a two-dimensional
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Fig. 1. Potential-energy contour-line diagram for the Ar2H
+

electronic ground state (11A′) as obtained with the DIM model:
U(r1, α) with r2 = 2.42 a0 fixed. The energy values are given
relative to the separated-atom limit 2Ar(1S) + H+.

plot of the DIM potential-energy function U(r1, α) for
Ar2H+ with r2 fixed is shown.

The most stable structure of Ar2H+ (Min1, global min-
imum of the ground-state PES) is the above-mentioned
firmly bound linear centro-symmetric (Ar–H–Ar)+ com-
plex. There is a second local minimum (Min2) correspond-
ing to an ArH+ molecular ion, loosely bound to an Ar
atom in a linear Ar· · ·ArH+ complex. The two minima
are separated by a saddle point (SP), see Figure 1. These
topographical features (compare [3,10]) agree well with
results of other authors (see, e.g., [23]).

4.1.2 Analysis of classical Ar2H
+ dynamics

Our first step towards the dynamics is the inspection of
the normal vibrations of the Ar2H+ complex in its most
stable structure corresponding to Min1. The displacement
vectors for the four normal vibrations of the linear centro-
symmetric complex are shown in Figure 2. These pictures
and the gradation of frequencies are easily understood:
the slowest is the symmetric heavy-atom (Ar–Ar) stretch-
ing vibration, somewhat faster is the (twofold degenerate)
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complex (Min1); initial conditions corresponding to normal-
mode vibrations: (a) νi = −0.499; (b) νi = 0.

bending, and much faster is the asymmetric stretch in-
volving mainly the proton as the lightest particle of the
system. From the symmetry properties at Min1, coupling
is expected to be strongest between the two σ modes, sym-
metric and asymmetric stretching. This qualitative conjec-
ture is verified by inspection of Figure 3 which shows, for
two values of the vibrational energy, the Fourier spectrum,
according to equation (6), of the classical vibrational mo-
tion of the linear centro-symmetric complex (Min1). The
dynamical variable Z(t) is taken as the superposition of all
Cartesian coordinates of the nuclei, which guarantees that
all frequencies occurring will also appear in the spectrum.
For very low vibrational energy (so to speak: “sub-zero-
point” vibration, ν1 = ν2 = ν3 = ν4 = −0.499, which is
allowed in the classical approach) we see a clean line spec-
trum of the normal frequencies with indications of a few
combination and overtone frequencies. Such a spectrum
is typical for largely regular dynamics. With elevated en-
ergy, anharmonicity comes quickly into play, the modes

get more and more strongly coupled and the spectrum ex-
hibits increasingly noisy character, pointing to irregular,
chaotic classical dynamics. As can be seen from Figure 3,
in the case considered we are already in the classically
chaotic regime even for a vibrational energy as low as the
zero-point energy. The classical dynamics remains chaotic
also for higher vibrational energies. Thus we find here for
the triatomic Ar2H+ complex the same sort of behaviour
of the classical vibrational motion – the early onset of
irregularity because of the PES anharmonicity and mode
coupling – as in other systems of this kind (see, e.g., [5,7]).

4.1.3 Vibrational quantum states of Ar2H
+ (J = 0)

With the procedure outlined in the Section 3.2.1 the vibra-
tional spectrum for J = 0 of the electronic ground state of
Ar2H+ was calculated up to an energy of 0.43 eV, slightly
below the first dissociation threshold, with an estimated
accuracy of about 0.1 cm−1; of course, this refers only
to the accuracy of the solution of the vibrational prob-
lem for the DIM PES employed, the errors of which are
several orders of magnitude larger. Furthermore it should
be mentioned that the highest states should probably have
additional errors due to the limited size of the grid with re-
spect to the distance coordinates r, R. We are fully aware
that the results therefore are to be considered as only qual-
itatively correct. Nevertheless it seemed to be reasonable
to treat all parts of the problem as accurately as we could
with our present means, thus providing reference data for
comparing methods.

The calculation resulted in 19 vibrational states for
the gerade symmetry and 12 for the ungerade symmetry
which are listed in Table 2 together with a tentative as-
signment of quantum numbers. Because of the highly in-
separable nature of the vibrational Hamiltonian in the co-
ordinates employed, the designation of states by quantum
numbers is not always obvious and sometimes question-
able. By analysis of the wavefunctions and additional in-
formation from various expectation values of energetic and
geometrical quantities an unequivocal assignment turned
out to be possible in most cases. Representative examples
of contour plots for the r, R dependence of the wavefunc-
tions Φ(r, R, θ) are given in Figures 4 and 5. To understand
these pictures the following should be noted. Due to the
transformation (3), in the limit R → 0 the wavefunctions
for the states (0, x, y) behave as Φ ∼ R, while for the
states (1, x, y) we have Φ ∼ R2. Consequently the abso-
lute values of the complete wavefunctions Ψ for the states
(0, x, y) tend to a maximum for R → 0, and for the states
(1, x, y) their limiting behaviour is Ψ ∼ R.

For the gerade vibrational states (Σ+
g species) in Ta-

ble 2a we have mainly two families of progressions (0, x, y)
of the Ar–Ar symmetric stretch vibration (y) in the
ground state (x = 00) and the excited state x = 20 of
the bending vibration. These progressions exhibit strong
anharmonicities and also some irregularities due to Fermi
resonances for the gerade states 15–18. The assessment
for the gerade state 18 is less clear as reflected also in
the corresponding wavefunction plot, see Figure 4b; this is
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Table 2. Vibrational eigenvalues and assessment of states for
the electronic ground state of Ar2H

+, calculated with the re-
striction J = 0.

(a) gerade states (Σ+
g ) (b) ungerade states (Σ+

u )

i assignmenta Evib b i assignmenta Evib b

1 (0, 00, 0) 1323 1 (1, 00, 0) 2246
2 (0, 00, 1) 1586 2 (1, 00, 1) 2437
3 (0, 00, 2) 1841 3 (1, 00, 2) 2613
4 (0, 00, 3) 2086 4 (1, 00, 3) 2776
5 (0, 00, 4) 2315 5 (1, 00, 4) 2925
6 (0, 20, 0) 2482 6 (1, 00, 5) 3064
7 (0, 00, 5) 2523 7 (1, 20, 0) 3093
8 (0, 00, 6) 2704 8 (1, 00, 6) 3195
9 (0, 20, 1) 2719 9 (1, 20, 1) 3240
10 (0, 00, 7) 2866 10 (1, 00, 7) 3319
11 (0, 20, 2) 2927 11 (1, 20, 2) 3374
12 (0, 00, 8) 3012 12 (1, 00, 8) 3438
13 (0, 20, 3) 3103
14 (0, 00, 9) 3149
15 (0, 20, 4) 3260
16 (0, 00, 10) 3282
17 (0, 00, 11) 3390
18 (0, 20, 5) 3409
19 (2, 00, 0) 3468

a The numbering of the modes is the same as in the foregoing
text and in Table 1, twofold degeneracy of the bend mode
included and vibrational angular momentum quantum number
as upper index indicated.
b The vibrational energy (in cm−1) is measured relative to the
bottom of the potential-energy well for Min1 (see Tab. 1).

an indication, that the coordinates employed are not well
suited for revealing the node patterns of the wavefunc-
tions in the (r, R) coordinate plane (which is also the case
for the other two-dimensional projections in Jacobi coor-
dinates). The highest state obtained (no. 19 in Tab. 2a),
is the only one with two quanta in the asymmetric stretch
vibration.

The ungerade vibrational states (Σ+
u species) in Ta-

ble 2b show a very similar behaviour: they start with the
first asymmetric stretch state (1, 00, 0), and we have again
two families of progressions (1, x, y) of the Ar-Ar symmet-
ric stretch vibration (y): for the bending vibration in the
ground state (x = 00) and in the excited state x = 20. The
quanta of the symmetric stretch vibration are somewhat
smaller than in the gerade case, which is just a conse-
quence of the change in geometry and the increasing an-
harmonicity for higher vibrational energies. Also here the
examples of vibrational-wavefunction contour plots in Fig-
ure 5 are more or less self-explanatory and show a rather
clear and typical pattern for all vibrational states.

These findings altogether lead to the conclusion that
the quantum dynamics of the triatomic complex does not
show any indication of irregularity (“quantum chaos”, for
example in the nodal structure of the wavefunctions) –
whereas classical dynamics does, as seen above.

Concerning the validity of the harmonic approxima-
tion, we observe that it gives the zero-point energy very

accurately: 0.164 eV (see Tab. 1), in agreement with the
quantum-mechanical calculation (see the state (0, 00, 0) in
Tab. 2a) which uses the complete anharmonic DIM PES.
This supports the discussions concerning the cluster sta-
bility in part I [3]. A more detailed comparison of the
quantum-mechanical data given in Table 2 (restricted to J
= 0 but taking into account the full anharmonicity) with
the results of the harmonic approximation is possible if
we consider the vibrational energy level differences. The
lowest excitation frequency for the asymmetric stretch vi-
bration, ∆ω(0000 → 1000) = 923 cm−1, is substantially
smaller than the harmonic frequency ω1 = 1157 cm−1.
However, the second excitation quantum, ∆ω(1000 →
2000) = 1222 cm−1, is larger than the harmonic level
spacing ω1. Thus we take note of a strong anharmonic-
ity of the asymmetric stretch vibration. For the symmet-
ric stretch, the anharmonicity is also significant as can be
seen from the discrepancy of the quantum ∆ω(0000 →
0001) = 263 cm−1 vs. ω4 = 306 cm−1; for the higher ex-
citations of this mode the deviations increase even more.
The only excitations from our quantum-mechanical calcu-
lations, which can be assigned to the bending vibration,
are the two-quantum transitions (x = 00 → 20), e.g. the
lowest one, ∆ω(0000 → 0200) = 1159 cm−1. This value is
in surprisingly good agreement with 2ω2,3 = 1184 cm−1.
But already for somewhat higher excited molecular vibra-
tional states (with increasing y, e.g.) the transition fre-
quencies quickly deviate more from 2ω2,3, thus indicating
strong anharmonicity also in the bending normal mode.

4.2 Normal vibrations and internal dynamics
of ArnH+ clusters with n > 2

For the medium-sized protonated argon clusters ArnH+

with n > 2, we confine our study to the classical approach.
Encouragement for doing so can be taken from the calcu-
lations of the vibrational quantum states of the triatomic
complex Ar2H+ (vide supra), which show that, at least
for the low-energy regime (in particular for the zero-point
motion), the normal-mode approximation and the classi-
cal trajectory treatment should give qualitatively correct
answers also to questions about the general behaviour of
the dependence of vibrational motion on the cluster size
(n), except for the problem of irregularity.

Having this in mind, we computed the normal-mode
frequencies and eigenvectors of all ArnH+ aggregates with
n = 2–30, each for the most stable structure of their
electronic ground states as determined in the DIM treat-
ment [3]. In Table 3 the normal frequencies for the smallest
complexes with n = 2–8 are collected, and Figure 6 shows
graphs of the dependence of the normal frequencies on n.
What one realizes from these data is the following: (1)
for each cluster (n) the frequencies can be grouped into
two sets. The first set consists of four frequencies, which
are clearly attributed to the four normal vibrations of the
(always nearly linear) triatomic central fragment Ar2H+

embedded in a more or less symmetric environment of sur-
rounding Ar atoms. One frequency around 1100 cm−1 is
easily recognized as belonging to the asymmetric stretch
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vibration of the Ar2H+ core fragment (essentially the os-
cillation of the proton between the two heavy Ar atoms).
The next lower two frequencies correspond to the bending
motion of the core fragment; this pair of frequencies be-
comes degenerate in the highly symmetrical clusters with
n = 2, n = 7 (first closed ring) etc. but splits in the unsym-
metrical structures, always remaining between 500 and
600 cm−1. The fourth frequency, roughly 300 cm−1, comes

from the symmetric stretch vibration of the Ar atoms in
the core fragment. All the other normal frequencies form
the second set appearing from n = 3 on; they belong to
the vibrations of the weakly bound extra-core Ar atoms
and have correspondingly small values, below 100 cm−1 in
the range of n considered. Clearly, one might distinguish
here several subsets, which could be attributed to differ-
ent vibrational modes of these outer Ar atoms. (2) The
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Table 3. Normal frequencies of ArnH+ with n = 2–8, and
corresponding zero-point energies (all in cm−1).

Ar2H
+ Ar3H

+ Ar4H
+ Ar5H

+ Ar6H
+ Ar7H

+ Ar8H
+

1157.3 1134.6 1106.2 1095.7 1093.5 1092.9 1098.5
591.8 598.9 577.1 575.6 558.8 529.5 529.0
591.8 562.7 567.8 540.4 524.7 529.5 527.9
305.9 303.1 299.4 299.4 300.9 302.0 301.1

52.8 57.7 57.6 61.7 60.4 67.0
48.3 55.3 57.2 61.1 60.4 61.3

51.5 55.1 56.9 60.2 60.7
40.7 54.1 54.2 60.2 60.2
24.3 43.3 45.6 48.2 48.4

29.5 43.1 43.0 43.8
27.1 36.2 43.0 43.5
19.5 29.4 41.8 43.0

24.3 32.2 37.9
23.6 32.2 33.6
13.7 25.1 32.1

25.1 30.6
22.2 28.4
22.2 25.4

22.1
18.0
13.4

1323.4 1350.2 1390.0 1427.3 1463.8 1515.1 1562.9

frequencies within each set depend in a characteristic way
on the cluster size, obviously related to the structure of the
cluster, as seen in Figure 6. For the medium-sized clusters
considered here, the building-up of the most stable struc-
tures (according to Fig. 6 of part I [3]) is accompanied
by marked changes in the four core vibrational frequen-
cies up to n = 19. Starting from Ar2H+, the formation of
the central five-membered Ar ring leads to a decrease of
asymmetric stretch and the bending frequencies of the core
(which are now non-degenerate), whereas the symmetric
stretch vibration is almost unaffected. When the follow-
ing, extra-central Ar ring is successively filled up plus the
cap Ar atom added (n = 8–13), the frequencies change
quite differently, such that now the bending vibration is
not influenced very much (slightly decreasing), while the
two stretch modes depend strongly on n, in opposite di-
rections: the asymmetric stretch frequency increases and
the symmetric stretch frequency decreases. On formation
of the next five-membered Ar ring plus cap Ar atom on
the other side, the stretch modes change their frequencies
again: the asymmetric stretch vibration becomes slower
and symmetric stretch faster, up to n = 19. For the most
unsymmetrical cluster, that with n = 13, the asymmetric
stretch frequency reaches its maximum value, the sym-
metric stretch its minimum. Beyond n = 19, when outer
(secondary) Ar shells are being built up, the core normal
frequencies do not change so markedly any more; this is
what one would expect. The asymmetric stretch frequency
slowly decreases, reflecting stepwise the magic numbers;
we speculate that for larger clusters (n > 30) the curve
will flatten out somewhere around 1000 cm−1. Also for the
other two core fragment modes the frequencies will level
off as can be presumed from the curves.
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Fig. 6. Graphs of normal frequencies ωi(n) of ArnH+ with
n = 2–30.

This dependence of the normal frequencies ωi on n
can be qualitatively understood if we take into account
the finding (see part I) that the structural and bonding
properties of the Ar2H+ core fragment do not vary sig-
nificantly with cluster size n. Most of the effects observed
above can then be attributed to the changing mass dis-
tribution in the building-up steps. If we take, e.g., for
the clusters with n = 2–7 an effective 3-particle model
(as extensively treated in textbooks like [19]), it is easily
seen that ω1, ω2, and ω3 must become smaller with in-
creasing n, whereas ω4 should remain roughly unchanged.
Since these regularities are so intimately connected with
the structural properties of the clusters, it should be pos-
sible to set up an increment scheme for the vibrational
frequencies, just as was done for the binding energy of the
clusters in part I [3]. We shall not embark on this here in
more detail.

We conclude this discussion with an illustration of the
appearance of the eigenvectors of the normal vibrations.
Figure 7 shows the displacement vectors of the atoms in
Ar3H+ corresponding to the eigenvectors of the six normal
vibrations, reflecting clearly their character.

Now we turn to the study of the classical intra-cluster
dynamics by multi-dimensional trajectories and the corre-
sponding Fourier spectrum of the nuclear coordinates as
functions of time. In Figures 8 and 9 the spectra of Ar3H+

and Ar7H+, respectively, are shown, each for two different
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amounts of vibrational energy in the normal modes of
the most stable structure; these spectra are to be com-
pared with those for Ar2H+ in Figure 3. The following
observations are made: (i) For the low-energy vibration
(νi = −0.499) the spectrum is, apart from the bend-
ing frequency splitting in Ar3H+ and the appearance of
the additional low-frequency lines, largely similar to that
for Ar2H+, with sharp peaks. (ii) As already seen in the
Ar2H+ case, the spectrum gets noisy rather quickly when
the vibrational energy increases. Also in the larger clus-
ters (we do not give here a full set of spectra but are
satisfied with the two examples), the classical motion is
predominantly chaotic, even for zero-point vibrational en-
ergies, as illustrated by the lower parts of the spectra in
Figures 8 and 9. (iii) On adding more Ar atoms, weakly
bound to the core fragment, the number of “soft”, an-
harmonic modes increases. Notwithstanding the fact that
the coupling between two modes may be of quite different
strength in each case (e.g., strong between two core modes
but weak between Ar wrapper atom vibrations and core
vibrations), the total effect of mode coupling is enhanced,
and the spectrum gets noisier. This means that enlarging
the cluster size leads to an increasing tendency to irreg-
ularity in the vibrational motion of such aggregates, as
expected.

The general observation is that the chaotic charac-
ter of the classical intra-cluster dynamics becomes more
and more dominant as the internal (vibrational) energy
and the cluster size increase. One may speculate about
some parallelism to be expected in the quantum dynam-
ics, but such studies are even nowadays still severely ham-
pered by the difficulties in performing sufficiently reliable
quantum-mechanical calculations for polyatomic systems
(vide supra).

4.3 Stability and internal rearrangement processes

To begin with, we return again to the problem of stability
of the protonated argon clusters, taking into account the
vibrational motions of the atoms in the cluster. In order
to make the discussion as clear as possible we consider the
relatively simple case of Ar3H+ as a prototype example.
Figure 10 shows a pictorial representation of relevant geo-
metrical arrangements (stationary points of the PES) and
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equation (7).

corresponding energies with and without the zero-point
energy (ZPE) contributions in the harmonic approxima-
tion.

The first striking observation from the left side of the
diagram in Figure 10 is that the cluster in its global-
minimum structure (Min1) is stable against fragmentation
(detachment of the outer Ar atom), but only by 82 meV
(the difference of EB + ZPE between Ar3H+ and Ar2H+).
This means that even an excitation of the asymmetric
stretch mode of the core fragment of Ar3H+ by one quan-
tum (141 meV) provides sufficient energy to split off the
outer Ar atom; evidently mode 5 is active in this process
(see Fig. 7). For the larger clusters, the stability proper-
ties are similar to the Ar3H+ case, as can be realized from
Figure 11, which shows a graph of the energy required for
evaporation of the most weakly bound outer Ar atom in
ArnH+ clusters, in dependence on the cluster size (n),

∆H(n) = ∆E(n) + ∆ZPE(n), (7)

where ∆E(n) = EB(n)−EB(n−1) is the electronic binding
energy of the last added Ar atom, defined by equations (2)
and (3) in paper I, and ∆ZPE(n) = ZPE(n)−ZPE(n−1)
denotes the additional amount of zero-point energy when
attaching an Ar atom to the cluster Arn−1H+ (all clus-
ters taken in their electronically most stable structure).
The medium-sized clusters for the range of n considered
here are stable against Ar-atom evaporation with |∆H |
values between 50 and 90 meV. As in the Ar3H+ case, an
amount of energy as small as one quantum of the asym-
metric stretch vibration of the Ar2H+ core fragment (for
the larger clusters even a one-quantum excitation of the
bending vibration) is sufficient for making the detachment
of one of the outermost Ar atoms energetically feasible.

Let us now turn to the intra-cluster atomic migra-
tion processes; again we consider in some detail the sim-
ple Ar3H+ case. From Figure 10 we see that there are
two pathways for rearranging the most stable triangu-
lar Ar3H+ configuration corresponding to Min1. The first
route, energetically preferred and connected with vibra-
tional mode 6, is Ar-atom migration via a linear (C∞v)
transition configuration (SP1) leading to another triangu-
lar arrangement, identical to the starting configuration.
The second route, with a higher potential-energy barrier
and connected with vibrational mode 3, is proton migra-
tion proceeding via a triangular (C2v) transition configu-
ration (SP2).

For gaining at least a qualitative insight into the
detailed intra-cluster dynamics, the simplest access is pro-
vided by the classical trajectory approach, which will be
used in the following discussion. We have to keep in mind,
however, that this is a model, not the full truth, and we
cannot prove the extent to which the results are realistic.
In particular, to which extent quantum effects will modify
the picture remains an open question.

In Figure 12 the intra-cluster rearrangement processes
are illustrated by a typical classical trajectory representa-
tion of the motions of the nuclei for initial conditions of
zero-point vibrational energy in each of the normal modes.
As can be seen from Figure 10, under these energetic con-
ditions both of the intra-cluster rearrangement channels
are open in a classical approach while they are closed in
a quantum-mechanical treatment. In the case considered
here (i.e., for the specific set of initial conditions cho-
sen), after about 1 ps (Fig. 12b) the proton is the first
to change its position, even though the energy barrier to
be surmounted is the highest. The transition “jump” itself
requires only about 0.15 ps. The positional change of the
proton is accompanied by a slightly delayed relaxational
motion of the Ar atoms due to the fact that the equilib-
rium Ar· · ·Ar distance in the Ar–H–Ar core fragment is
about 1 a0 shorter than each of the two other Ar· · ·Ar dis-
tances (5.5 a0 vs. 6.6 a0). Thereby the momenta of the Ar
atoms increase, which corresponds to some energy trans-
fer into the modes 4, 5, and 6 (note the larger displace-
ment amplitudes of the Ar atoms in Fig. 12b compared
with those in Fig. 12a). At t = 1.6 ps (Fig. 12c) there
is sufficient energy (and momentum) in mode 6 for start-
ing an internal rotational motion of the ArHAr+ fragment
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particle trajectories at the end of each time window are marked with a dot.

against the third Ar atom, or in other words: starting the
migration process of the third Ar atom through the lin-
ear transition configuration (SP1 in Fig. 10) as mentioned
above, leading to another, equivalent triangular arrange-
ment. The whole Ar-atom migration requires 3 ps which is
about 20 times longer than for the proton transfer. In Fig-
ure 12d the arrangement moves back into its preceding ori-
entation. This is the typical behaviour which we observed
in the trajectory studies: once there is sufficient energy
in the relevant vibrational modes (here: mode 6), the sys-
tem flips back and forth while vibrational energy flows off
into other modes. This is illustrated by Figure 12e, where
mode 6 has lost some part of its energy and the Ar-atom
migration process has stopped. Nevertheless there is still a
considerable amount of vibrational energy in the modes 4,
5, and 6, which can be seen from the larger amplitudes of
the Ar-atom trajectories compared to the elongations in
Figure 12a.

For the energies in the case considered here, the Ar-
atom evaporation channel is also open in the classical ap-
proach (comp. Fig. 10). It is a very slow process which,
once initiated, shows no interesting peculiarities; therefore
we omit special illustration and discussion.

The findings discussed here show clearly that the in-
ternal dynamics of the clusters cannot be understood by
considering the energetic aspects alone. It must be taken
into account that for initiating one of the competing pro-
cesses, a sufficiently large amount of energy must flow into
the respective active mode. Furthermore, in the present
case the processes involve, above all, the motion of either
heavy particles (Ar) as in Ar-atom migration and evap-
oration, or a light particle (H) as in proton migration,
whereby the Ar-atom processes are slow while proton mi-
gration is fast. This altogether explains qualitatively the
observations revealed when running a batch of classical
trajectories of the kind characterized above: (i) First of
all proton migration takes place; Ar-atom migration and
evaporation set in later. Although this seems to contra-
dict the energetic requirements (vide supra), it is easily
understood from the fact that, as soon as the active mode
3 has acquired sufficient energy (from coupling with other
relatively energy-rich core modes), the proton immedi-
ately undergoes displacement, whereas for the Ar-atom
processes the active modes 5 and 6, which are weakly cou-
pled to the energy-rich core modes, need on the average
more time to acquire energy and are much slower so that
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energy may partly drain off again. (ii) Proton hopping
leads to a certain excitation of accompanying outer-Ar-
atom vibrations, which are favourable for subsequent Ar
migration.

For larger clusters, the energetics shows a quite analo-
gous situation. The least energy (some 10 meV) is required
for outer-Ar-atom (Ar solvent wrapper, so to say) rear-
rangement, Ar-atom evaporation needs somewhat more
energy (50–90 meV), and the largest energy amount
(100–200 meV) is necessary for changing the position of
the proton between one pair of Ar atoms and another.
This means that with only the zero-point energy in each
of the vibrational modes all three intra-cluster rearrange-
ment channels are open in the classical approach, and
there is a competition between them. Even without per-
forming extended classical trajectory studies, we would ex-
pect from the structural and dynamical regularities alone
(see Sect. 4.2 and part I) strong analogies to the Ar3H+

prototype for the classical rearrangement dynamics of the
medium-sized clusters. Thus, supposing again initial con-
ditions with zero-point energy in each of the normal vi-
brational modes, proton migration should be dynamically
preferred (despite the energetic handicap). One would ex-
pect not only the sequence of the events (proton migration
– Ar-atom migration – Ar-atom evaporation), but also the
other aspects of classical intra-cluster dynamics to be ba-
sically similar to those in Ar3H+.

If we go to higher internal (vibrational) energies, the
situation becomes less transparent but the same mecha-
nisms should be effective, at least as long the normal-mode
approximation is meaningful.

4.4 UV photodissociation

Clusters with a well-defined chromophore unit could in
principle be interesting subjects for studies of energy re-
distribution and rearrangement in electronically excited
polyatomic aggregates. Unfortunately, in the case of pro-
tonated argon clusters such processes are overshadowed
by fragmentation. As already explained in some detail in
part I (see Sects. 3.2.2 and 3.3.2 therein), all low-lying ex-
cited electronic states of the Ar2H+ core fragment, up to
around 10–12 eV above the ground state, are globally re-
pulsive; no stable arrangement of the atomic constituents
of the ArnH+ clusters will be formed in the electronic
states of the energy range considered. This means that af-
ter exciting a cluster ArnH+ vertically from the electron-
ically most stable ground-state structure, it ends up with
an energy significantly higher than the asymptotic atom-
ization limit of the set of excited states concerned, namely
(n − 1)Ar(1S) + Ar+(2P◦) + H(2S), and consequently the
dominant process following photoexcitation of the cluster
is the complete fragmentation into its atomic constituents
as indicated above. It cannot be entirely excluded but it
appears rather unprobable that (maybe as a result of some
secondary processes) any smaller clusters will occur. Be-
cause of this situation, the detailed dynamics of the UV
photodissociation processes seems less interesting; it has
not been pursued further in the present study.

4.5 Collision processes

As envisaged in Section 2, we discuss here some types
of collision processes involving protonated argon clusters,
namely collisions of a proton or a small ArnH+ complex
(n = 1 or 2) with a neutral pure Arm cluster, accord-
ing to equations (1) and (2), respectively. It was already
mentioned that we intend neither to explore the full vari-
ety of possible elementary processes in such systems, nor
to make quantitative predictions for cross-sections or rate
constants. Therefore, we restricted this part of the study
to a system of seven argon atoms and one proton, and we
selected only a few out of the many conceivable collision
processes in order to visualize some typical elementary
events which may happen to the kind of clusters consid-
ered here. With this in mind we have run sample trajecto-
ries (several tens to hundreds) with appropriately selected
initial conditions, for each of the processes considered. The
findings are briefly reported in the following paragraphs.

Because of the large exothermicity, the outcome of the
type 1 collisions was more or less what one would imag-
ine. Let us consider a very slow proton (say, with kinetic
energy below 1 µeV) impinging on an Ar7 cluster. Com-
pared with the binding (atomization) energy of the clus-
ter (roughly 0.2 eV in the present case), such (relative)
translational energy is small. However, because of the at-
tracting polarization forces the proton is accelerated and,
most importantly, has the chance to bind strongly to one
(or two) of the Ar atoms, thereby releasing a large amount
of energy, more than 4 eV. This leads to an “explosion”
of the cluster, i.e. to nearly complete fragmentation:

H+ + Ar7 → ArH+ + 6Ar , (8)

or to fragmentation into several small complexes, with a
few atoms each. Besides this direct process, the fragmen-
tation can also proceed stepwise:

H+ + Ar7 → (Ar2H+)∗ + 5Ar → ArH+ + 6Ar . (9)

Here, the proton first hits the Ar7 cluster, becoming at-
tached to two of the Ar atoms thus forming a strongly
vibrating and rotating transient Ar2H+ complex. Finally
(after a few ps), this cluster dissociates into ArH+ and
an Ar atom. The rest of the original cluster decomposes
in the early stage of the process. For larger clusters, the
collision with the proton will be more localized, so that
with increasing probability, the collision should also lead
to one or more smaller neutral Ar clusters.

It is an interesting question to ask what will happen
to an ArH+ ion produced in the foregoing proton-cluster
collision if it meets another neutral argon cluster, for ex-
ample Ar6. One possibility is the formation of Ar2H+ with
atomization of the rest of the neutral cluster by the excess
energy of about 0.5 eV, even for very low collision energy,
according to

ArH+ + Ar6 → Ar2H+ + 5Ar . (10)

For sufficiently slow collisions, larger cluster ions may also
form via similar processes:

Ar2H+ + Ar5 → Ar3H+ + 4Ar . (11)
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On the other hand, if we consider collisions of a single Ar
atom with a protonated argon cluster, say Ar6H+, there
should be a chance for simple attachment of an ultra-slow
Ar atom leading to a vibrationally and rotationally ex-
cited product cluster. The dominant process, however, was
found to be the exchange of the incoming argon atom with
one from the cluster according to

Ar′ + Ar6H+ → Ar5Ar′H+ + Ar . (12)

The existence of these processes can be taken as a hint to
possible routes for the actual generation of ArnH+ clus-
ters, started by the production of ArH+ molecular ions ac-
cording to equation (8). This initial step is then followed
by the successive formation of larger ionic complexes in
processes like equations (10) and (11).

5 Summary and conclusions

In this second part of our study we exploit the tools pro-
vided in the first part for generating, in a very efficient
way, potential-energy surface data for protonated argon
clusters, to investigate the dynamics of such systems, mak-
ing use also of our knowledge about the bonding and struc-
tural properties. The focus of our effort is on gaining infor-
mation about the intra-cluster motions, in particular the
vibrations, and the question of regularity vs. irregularity
in dependence on the cluster size. Except for the simple
triatomic fragment Ar2H+, for which we are able to calcu-
late accurate quantum states of vibration, we rely for the
larger systems on the normal-mode and the classical tra-
jectory approaches. In addition to nonreactive dynamics
we explore also, for the small cluster with n = 3, the intra-
cluster rearrangements (proton and Ar-atom migration),
including also Ar-atom detachment. Finally some illustra-
tive findings are presented for possible collision processes
involving protonated argon clusters, obtained likewise in
a classical trajectory treatment.

The main results are the following.

1. The minimum-basis-set diatomics-in-molecules (DIM)
approach with ab-initio input data proved to be a
sufficiently reliable tool for generating the interac-
tion potential-energy data necessary in studies of the
dynamics of polyatomic systems like the protonated
argon clusters. The method is so efficient that each
potential-energy value can be calculated at the mo-
ment it is needed, e.g. “on the fly” in a classical treat-
ment of a collision.

2. For the non-rotating triatomic fragment Ar2H+ (J =
0) the quantum states of vibration have been accu-
rately determined using an improved filter diagonal-
ization method. This was done in order to cross-check
the results of the normal-mode approach and to in-
vestigate the question of quantum irregularity in these
systems. Whereas the zero-point energy is very accu-
rately reproduced in the harmonic approximation, the
vibrational energy level spacings show the expected
deviations from the quanta obtained in the harmonic

approximation. No indication of “quantum chaos” is
found.

3. The classical internal dynamics of Ar2H+ as reflected
in the Fourier spectra of dynamical variables (here:
coordinates) as functions of time shows characteristics
analogous to earlier findings for systems of this kind:
a clean line spectrum for very low energies (far below
zero-point energy in the present case) followed by an
early onset of irregularity (classical chaos) as energy
increases. This is a consequence of anharmonicity and
mode coupling in the potential energy.

4. The normal frequencies of the clusters ArnH+ with
n > 2 can be grouped into subsets: the four largest fre-
quencies are attributed to the vibrations of the linear
inner Ar2H+ fragment (asymmetric stretch, twofold
bending, symmetric stretch); the remaining (low) fre-
quencies belong to vibrations of the outer attached
Ar atoms. The n-dependency of the Ar2H+ fragment
frequencies exhibits characteristic features which are
clearly related to the building-up sequence discussed
in part I (reflecting, for example, magic numbers),
whereas the low frequencies form a band spreading be-
tween a few cm−1 and about 100 cm−1.

5. The classical internal dynamics of the clusters ArnH+

with n > 2 shows an increasing degree of irregularity
with increasing energy (like that exhibited in many
triatomic cases) and cluster size (n).

6. All clusters ArnH+ (as mentioned in part I) are not
only electronically stable but remain so also with inclu-
sion of the zero-point vibrational energy. Even a little
vibrational excitation, however, causes internal rear-
rangement processes. Proton migration turns out to
be dynamically preferred (despite the energetic hand-
icap) over Ar-atom migration and evaporation.

7. As already discussed in part I, electronic (UV/visible
light) excitation always leads to fragmentation (up to
atomization) of the clusters because of the globally
repulsive nature of the excited-state potential-energy
surfaces in the energy range below about 10 eV.

8. Out of the various conceivable collision processes in-
volving protonated argon clusters, a few selected pro-
cesses are discussed here, which could be illustrative
examples of those playing a role in the gas-phase for-
mation of medium-sized clusters ArnH+, started by
proton collisions with neutral Arm clusters. For this
study the classical trajectory approach has been ap-
plied. The examples are restricted to the case of one
proton and seven argon atoms, but presumably the
findings can be generalized.

In conclusion, we may state, that our relatively crude
“minimal ab-initio DIM model” for generating the PES
data allows a successful treatment not only of the struc-
ture but also of the dynamics of medium-sized ArnH+

clusters. This fact is encouraging for an extension of the
investigations to more complicated systems. Work in this
direction is in progress.

The authors thank the referees for several useful comments and
suggestions.
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5. L. Zülicke, F. Ragnetti, R. Neumann, Ch. Zuhrt, Int. J.
Quant. Chem. 64, 211 (1997)

6. Ch. Zuhrt, R. Neumann, L. Zülicke, Chem. Phys. 240, 117
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14. L. Zülicke, Ch. Zuhrt, X. Chapuisat, C. Saint-Espès, Int.

J. Quant. Chem. 52, 227 (1994)
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